skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Giles, Barbara_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We perform a statistical study of 3-s ultra-low frequency (ULF) waves using Magnetospheric Multiscale observations in the Earth's foreshock region. The average phase velocity in the plasma rest frame is determined to be anti-sunward, and the intrinsic polarization is right-handed. We further examine the linear instability conditions based on the drift-bi-Maxwellian distribution functions according to the observed plasma conditions. The resulting instability is a solution to the common dispersion equation of the ion/ion right-hand non-resonant and left-hand resonant instabilities. The predicted wave propagation is also predominantly anti-sunward. The cyclotron resonant conditions of the solar wind and backstreaming beam ions are evaluated, and we find that, in some cases, the anti-sunward propagating waves can be resonant with beam ions, which was overlooked in previous studies. The study suggests that the dispersion equation provides the 3-s ULF waves a fundamental explanation that unifies a rich variety of resonant conditions. 
    more » « less